Bringing Gesture Recognition To All Devices

Bryce KelloggT, Vamsi Talla’, and Shyamnath Gollakota
University of Washington

TCo-primary Student Authors

Abstract

Existing gesture-recognition systems consume signifi-
cant power and computational resources that limit how
they may be used in low-end devices. We introduce
AllSee, the first gesture-recognition system that can op-
erate on a range of computing devices including those
with no batteries. AllSee consumes three to four or-
ders of magnitude lower power than state-of-the-art sys-
tems and can enable always-on gesture recognition for
smartphones and tablets. It extracts gesture information
from existing wireless signals (e.g., TV transmissions),
but does not incur the power and computational over-
heads of prior wireless approaches. We build AllSee
prototypes that can recognize gestures on RFID tags and
power-harvesting sensors. We also integrate our hard-
ware with an off-the-shelf Nexus S phone and demon-
strate gesture recognition in through-the-pocket scenar-
ios. Our results show that AllSee achieves classification
accuracies as high as 97% over a set of eight gestures.

1 Introduction

There is growing interest in using human gestures as a
means of interaction with computing devices. The suc-
cess of Xbox Kinect has led to the development of novel
gesture-recognition approaches including those based on
infrared [4], electric-field sensing [6], and more recently,
wireless signals (e.g., Wi-Fi) [32].

Existing approaches, however, are limited in how they
may be used for low-end devices. For example, the
“air gesture” system on Samsung Galaxy S4 drains the
battery when run continuously [2]. Similarly, wire-
less approaches [18, 32] consume significant power and
computational resources that limit their applicability to
plugged-in devices such as Wi-Fi routers.

This is due to two main reasons: First, existing
approaches need power-hungry sensing hardware —
always-on cameras drain the battery; wireless receivers
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Figure 1: AllSee Prototype. It has two main compo-
nents: a pluggable receiver that extracts the amplitude
of wireless signals (e.g., TV and RFID transmissions),
and our classification logic implemented on a microcon-
troller. It also comes with LEDs and a UART interface.

use power-intensive analog components such as oscilla-
tors and high-speed ADCs. Second, they require rich sig-
nal processing capabilities — computing optical flows,
FFTs, frequency-time Doppler profiles, etc., is compu-
tationally expensive; performing these operations while
maintaining fast response times consumes power.

We introduce AllSee, a novel gesture-recognition sys-
tem that can be used for computing devices, no matter
how low-end and power-constrained they are. Such a ca-
pability can enable a number of interactive applications
for Internet-of-things, where sensor deployments enable
smart homes and cities [14, 24]; in fact, we show that
AllSee can operate on battery-free devices that run off
of harvested RF energy. AllSee can also be useful for
small form-factor consumer electronics without the need
for conventional input modalities like keypads. Finally,
AllSee consumes three to four orders of magnitude lower
power than existing systems; thus, it can also enable
always-on gesture recognition on mobile devices such as
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Figure 2: Gesture Sketches. AllSee can detect and clas-
sify these eight gestures using TV and RFID transmis-
sions with average classification accuracies of 94.4% and
97% respectively.

smartphones and tablets.

AllSee’s approach is to extract gesture information
from ambient RF signals (e.g., TV transmissions) that al-
ready exist around us. AllSee can also work with signals
from dedicated RF sources like RFID readers. AllSee
eliminates the need for power-hungry wireless hardware
components (e.g., oscillators) by using low-power ana-
log operations to extract just the signal amplitude. To
keep the computational complexity low, we avoid prior
Doppler-based approaches that require computing FFTs
and frequency-time Doppler profiles.! Instead, we in-
troduce a novel design that extracts gesture information
from the amplitude of the received signal.

At a high level, we use the insight that motion at a
location farther from the receiver results in smaller wire-
less signal changes than from a close-by location. This
is because the reflections from a farther location experi-
ence higher attenuation and hence have lower energy at
the receiver. Now, consider the push and pull gestures
shown in Fig. 2(b) and Fig. 2(c). As the user moves her
arm foward the receiver, the wireless changes induced by
the gesture increase with time, as the arm gets closer to
the receiver. On the other hand, as the user moves her
arm away from the receiver, the changes decrease with
time. Thus, the receiver can distinguish between a pull
and a push gesture even without access to the Doppler in-
formation. In §3, we explore this time-domain analysis
further and extract deterministic rules to detect and clas-
sify the eight gestures in Fig. 2. Further in §3.3, we show
that a subset of these rules can be encoded in the analog
domain using passive components such as capacitors and
resistors, further reducing our power consumption.

To demonstrate the feasibility of AllSee, we built mul-
tiple prototypes (one of which is shown in Fig. 1) that
achieve gesture recognition on a range of devices. The
first prototype is a modified RFID tag that extracts ges-

IAs we show in §3.2.1, AllSee’s receiver does not have phase in-
formation. Hence prior Doppler frequency solutions are in fact not
applicable.

ture information from signals of an RFID reader. The
second prototype is a battery-free device that uses ex-
isting 725 MHz TV signals as a source of both power
and gesture information. The third prototype encodes
our gesture-detection rules using analog components, to
further reduce the power consumption. We also integrate
our prototypes with an off-the-shelf Nexus S phone and
demonstrate gesture recognition in through-the-pocket
scenarios; this enables the user to gesture at the phone
in a pocket, to say change volume or mute the phone.

We evaluated our prototypes with up to five users us-
ing the gestures shown in Fig. 2. Our findings are as
follows:

e AllSee classifies the eight gestures shown in Fig. 2
with an average accuracy of 97% and 94.4% on our
RFID- and TV-based prototypes respectively; the accu-
racy is 92.5% with our phone prototype in through-the-
pocket scenarios. This is promising, given that the accu-
racy for random guesses is 12.5%.

e AllSee achieves the above accuracies for distances of
up to 2.5 feet from the device, while using 28.91 uW.
This is in contrast to a state-of-the-art low-power gesture
recognition system that consumes about 66 mW and has
arange of upto 15 centimeters [31].

e The rate of false positive events—gesture detection in
the absence of the target human—is 0.083 events per
hour over a 24-hour period. AllSee achieves this by using
a repetitive flick gesture to gain access to the system.

o AllSee’s response time (the time between the gesture’s
end and its recognition) is less than 80 us.

e Our analog gesture-encoding prototype that uses ca-
pacitors and resistors to detect a subset of gestures, con-
sumes as little as 5.85 uW.

Contributions. We make the following contributions:

e We introduce the first gesture-recognition system that
can run on battery-free devices. Our approach also en-
ables always-on gesture recognition on mobile devices.

e We present computationally-light algorithms to extract
gesture information from time-domain wireless signals.

e We show how to encode gestures in the analog domain
using components such as capacitors and resistors.

e We build prototypes to demonstrate gesture recogni-
tion for multiple devices including RFID tags and power-
harvesting battery-free devices. We integrate our proto-
types with an off-the-shelf smartphone and use AllSee to
classify gestures while the phone is in a pocket.

Our current implementation is limited to locations that
have signals from either TV towers or RFID readers.
We believe, however, that the techniques developed in
this paper can be extended to leverage cellular and Wi-Fi
transmissions, making AllSee more ubiquitous.



2 Related Work

Our work is related to prior art from both wireless and
gesture-recognition systems.

(a) Wireless Systems: Prior work has shown the feasi-
bility of using wireless signals for coarse motion detec-
tion (e.g., running [21] and walking forward and back-
ward [18]). Further, our recent work on WiSee has shown
how to extract gesture information from wireless sig-
nals [32]. These systems require power-hungry ultra-
wideband transceivers [20, 33], interference-nulling
hardware [18], or multiple antennas [18, 32]. Fur-
ther, they require receivers with power-consuming ana-
log components such as oscillators and high-speed ADCs
and impose significant computational requirements such
as 1024-point FFT and frequency-time Doppler profile
computations [32]. We also note that these systems were
implemented on USRPs, each of which consumes about
13.8 W [16]. In contrast, AllSee enables gesture recog-
nition with orders of magnitude lower power.

AllSee is also related to work on low-power ultra-
wideband radar sensors [1, 26, 27] that perform prox-
imity detection.  AllSee builds on this work, but
goes beyond motion and velocity detection and designs
the first wireless gesture-recognition system for power-
constrained devices. We also show how to encode ges-
tures using analog components with as little as 5.85 uW.

Finally, prior work [25, 29] has leveraged backscat-
tered signals from RFID tags for activity recognition on
a powered RFID reader. These systems, however, require
quite a bit of computational processing and are designed
to operate on powered RFID readers. In contrast, we en-
able gesture recognition on power-constrained devices.

(b) Gesture-Recognition Systems: Prior gesture-
recognition systems can be primarily classified into
vision-based, infrared-based, electric-field sensing, ul-
trasonic, and wearable approaches. Xbox Kinect [17],
Leap Motion [9], PointGrab [12], and CrunchFish [5]
use advances in cameras and computer vision to enable
gesture recognition. Xbox Kinect uses the 3D sensor by
PrimeSense which consumes 2.25 W [13], while Point-
Grab and CrunchFish run on mobile devices and con-
sume as much power as the embedded camera.

Samsung Galaxy S4 introduced an “air gesture” fea-
ture that uses infrared cameras to enable gesture recog-
nition. It is, however, not recommended to keep the
gesture recognition system ON as it can drain the bat-
tery [2]. Further, it is known to be sensitive to light-
ing conditions [3] and does not work in through-the-
pocket scenarios. GestIC [6], which we believe is the
state-of-the-art system, uses electric-field sensing to en-
able gesture recognition using about 66 mW in the pro-
cessing mode [31]. However, it requires the user’s hand

to be within 15 centimeters of the screen and also does
not work in through-the-pocket scenarios. Further, it re-
quires a relatively large surface area for sensing the elec-
tric fields. AllSee on the other hand achieves gesture
recognition with three to four orders of magnitude lower
power, works on devices with smaller form factors and
in through-the-pocket scenarios.

Ultrasonic systems such as SoundWave [28] transmit
ultrasound waves and analyze them for gesture recogni-
tion. These systems require active ultrasound transmis-
sions and expensive operations such as 1024-point FFTs
and Doppler profile computations. In contrast, AllSee
leverages existing wireless signals (e.g., TV) and thus
does not require active transmissions; this reduces the
power consumption to the microwatts range. We note
that, in principle, the time-domain analysis developed in
this paper can be applied to ultrasonic systems to reduce
their computational complexity.

Finally, prior work on inertial sensing and other on-
body gesture recognition systems require instrumenting
the human body with sensing devices [11, 22, 23]. In
contrast, we focus on gesture recognition without requir-
ing such instrumentation.

3 AllSee

AllSee is an ultra-low power wireless gesture-
recognition sensor that consumes three to four orders of
magnitude lower power than state-of-the-art systems.
It uses ambient wireless signals (e.g., TV, cellular, and
Wi-Fi) to extract gesture information. In this paper, we
focus on demonstrating the feasibility of our designs
using TV (and RFID) transmissions.

Designing such a wireless system is challenging for
three main reasons: First, traditional radio receivers use
power-intensive components such as oscillators that pro-
vide magnitude and phase information; the latter allows
for gesture-recognition using Doppler frequency analy-
sis. In contrast, AllSee uses passive components that
significantly reduce the power consumption but provide
only magnitude information. Thus, we need to develop
algorithms and designs that can extract gesture informa-
tion without relying on Doppler frequencies. Second, our
designs should work on power-constrained devices and
hence should be highly power-efficient and require min-
imal computational resources. Finally, gesture recogni-
tion is interactive in nature and hence requires short re-
sponse times; this means that our algorithms and hard-
ware should introduce minimal delays.

The rest of this section describes how AllSee ad-
dresses these challenges. We first describe AllSee’s re-
ceiver design that extracts amplitude information using
passive hardware components, and then present our al-
gorithm to perform gesture classification using only this
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Figure 3: AllSee’s receiver circuit. AllSee uses an enve-
lope detector to extract the amplitude information. Using
different values for the analog components, the receiver
can work with both TV and RFID transmissions.

magnitude information.

3.1 AllSee’s Receiver Design

We ask the following question: how can we extract am-
plitude information without using power-intensive com-
ponents such as oscillators? Oscillators generate the
carrier frequency (e.g., the 725 MHz TV carrier), and
are typically used at receivers to remove the carrier fre-
quency (down-conversion). At a high level, AllSee re-
moves the carrier frequency by using an analog envelope
detector. The rest of this section first describes how this
works for constant-wave transmissions (e.g., RFID) and
then extends it to work with fast-changing ambient TV
transmissions.

(a) With Constant-Wave Transmissions: AllSee uses the
envelope detector shown in Fig. 3 to remove the carrier
frequency and extract amplitude information. As shown
in the figure, the envelope detector tracks the envelope
of the received signal, while eliminating the carrier fre-
quency. The key point to note is that the envelope detec-
tor circuit is designed using passive analog components
(diodes, resistors, and capacitors) and hence is ultra-low
power in nature. The operating principle behind the de-
sign is similar to that used in RFID tags: To a first-order
approximation, diodes act as switches that allow current
to flow in the forward direction but not in the reverse; ca-
pacitors are charge-storage elements; and resistors regu-
late current flow. The diode in the above circuit provides
charge to the capacitor C;, whenever the input voltage
is greater than the voltage at the capacitor. On the other
hand, when the input is lower than the voltage at the ca-
pacitor, the diode does not provide charge and the resis-
tors R and R, slowly dissipate the energy stored on the
capacitor, lowering its voltage. The rate of voltage drop
is determined by the product Cy x (R; +R;). Thus, by
choosing appropriate values of Ry, R, and C;, we can

pick the rate at which the signal’s envelope is tracked.
Effectively, the above circuit acts as a low-pass filter,
smoothing out the carrier in the constant-wave transmis-
sions; the additional capacitor C, aids with this filtering.

Note that the envelope detector does not remove the
amplitude variations caused by human gestures. This is
because the circuit is tuned to track the variations caused
by human motion which happen at a rate orders of mag-
nitude lower than the carrier frequency.

(b) With Fast-Changing TV Transmissions: The key
problem with ambient signals is that they have informa-
tion encoded in them and hence have fast-varying am-
plitudes. For example, ATSC TV transmissions encode
information using 8VSB modulation, which changes the
instantaneous amplitude of the signal. In principle, the
receiver could decode the TV transmissions and estimate
the channel parameters to extract the amplitude changes
that are due to human gestures. This is, however, infeasi-
ble on a power-constrained device. Thus, the challenge is
to distinguish between the encoded TV information and
the changes in the received signal due to human gestures,
while operating on power-constrained devices.

Our key insight is that amplitude changes due to hu-
man gestures happen at a much lower rate than the
changes inherent to TV transmissions. Our design lever-
ages this difference in the rates to separate the two ef-
fects. Specifically, TV signals encode information at a
rate of 6 MHz, but human gestures occur at a maximum
rate of tens of Hertz. AllSee uses the envelope detector in
Fig. 3 to distinguish between these rates. Specifically, we
set the time constant of the envelope detector to be much
greater than 6M#Hz' This ensures that the encoded TV
data is filtered out, leaving only the amplitude changes
that are due to human gestures.

3.2 AllSee’s Classification Logic

AllSee extracts gesture information from the signal out-
put by the envelope detector. In this section, we first ex-
plain why prior approaches to wireless gesture recogni-
tion do not apply in our case. We then describe AllSee’s
algorithm to classify gestures.

3.2.1 Why Are Prior Approaches Not Applicable?

Prior approaches leverage wireless Doppler shifts for
gesture classification. For example, the reflections from
a user moving her hand toward the wireless receiver cre-
ates a positive Doppler shift. On the other hand, when the
user moves her hand away from the receiver, it creates a
negative Doppler shift. By using the sign of the Doppler
shift, prior work [32] distinguishes between these ges-
tures.



The problem is that the output of the envelope detec-
tor does not have phase information, which makes it dif-
ficult to apply the above approach. To understand this in
more detail, let us consider a basic scenario where an RF
source transmits a sinusoid with a frequency of f. Thus,
the transmitted signal is given by:

sinftsinf,t

where f; is the transmitter’s center frequency. Now, say
that the user moves her arm towards the receiver and cre-
ates a Doppler shift, f;. The receiver now receives the
following signal [36]:

sinftsinfct + sinftsin(fe + fa)t

That is, the received signal is a linear combination of the
direct signal from the RF source and the Doppler-shifted
multi-path reflection from the user’s arm. For simplicity,
we assume that the user’s reflection has the same signal
strength as the direct signal, but the analysis would be
similar in the general case. Now we can simplify the
above equation to:

sinft(sinfct—l—sin(fc—i-fd) ) €))
= 2smftc0s g Lsin(f. + ) 2)

Traditional receivers use oscillators tuned to the cen-
ter frequency f,; hence they can extract the Doppler
frequency f; from the last sinusoid term in the above
equation. AllSee, however, uses a low-power envelope-
detector circuit that by nature is not as frequency-
selective as an oscillator [19]. Specifically, the envelope
detector tracks the envelope of the fastest-changing sinu-
soid in the received signal. Thus, in Eq. 2 the envelope
detector considers the last sinusoid, sin(f, + )t as the
effective transmitted signal and removes it. So the out-
put of the envelope detector is,

2smftc0sf"

= sm(erf")tJrsm(f f“’)

Now if the receiver computes an FFT of the above signal,
centered at f, it sees energy in both the positive and nega-
tive frequencies. This holds true independent of whether
the user performs the push or the pull action. As a re-
sult, the receiver cannot distinguish between these two
gestures using Doppler information.

Note that, from Eq. 2 the Doppler shift does not affect
the transmitted signal sinft. Hence, replacing the trans-
mitted sinusoid with any other signal does not change the
above analysis.

3.2.2 AllSee’s Time-Domain Analysis

AllSee leverages both the structure of the magnitude
changes as well as the timing information to classify ges-
tures. To see this, consider the push and pull gestures. As
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Figure 4: Changes created on the envelope detector’s
output. The amplitude changes have a unique corre-
spondence to the gestures in Fig. 2.

the user moves her arm towards the receiver, the changes
in magnitude increase, as the arm gets closer to the re-
ceiver. This is because the reflections from the user’s
arm undergo lower attenuations as the arm gets closer.
When the user moves her arm away from the receiver,
the changes in the magnitude decrease with time. Thus,
the changes in the time-domain signal can be uniquely
mapped to the push and the pull gestures as shown in
Figs. 4(b) and (c).

AllSee also leverages timing information to classify
gestures. Specifically, the wireless changes created by
the flick gesture, as shown in Fig. 4(a), occurs for a
shorter period of time compared to a push or a pull ges-
ture. Using this timing information one can distinguish
between these three gestures. Fig. 4 plots the amplitude
changes created by our gestures as a function of time.

In the rest of this section, we describe in more de-
tail how AllSee identifies and classifies these gestures.
Specifically, AllSee uses a low-rate 10-bit ADC operat-
ing at 200 Hz to digitally process the signal output by
the envelope detector. AllSee’s time-domain classifica-
tion algorithm has three main steps: (1) Signal condi-
tioning to remove location dependence, (2) Segmenta-
tion to identify a time-domain segment that corresponds
to a gesture, and (3) Classification to determine the most
likely gesture amongst a set of gestures.

(1) Signal Conditioning: Our goal is to extract a deter-
ministic location-independent mapping between gestures
and amplitude changes. Note that the actual amplitudes
vary with the user’s position. For example, when the user
performs the push gesture, the initial and final amplitudes
depend on where the user starts and ends the push action.
AllSee removes these location dependencies by perform-
ing a moving average over a time window (set to 320 ms
in our implementation) and subtracting the average from



each digital sample returned by the ADC; thus, effec-
tively normalizing the received signal.

(2) Segmentation: AllSee uses amplitude changes to de-
tects the start and end of a gesture. Specifically, it com-
putes a derivative of the received signal, i.e., the differ-
ence between the current and the previous sample. When
this difference rises above a threshold (set to 17.5 mV in
our implementation), AllSee detects the beginning of a
gesture. Similarly when this difference falls below the
same threshold, we detect the end of the gesture. The use
of the derivative operation to detect the beginning and
end of a gesture works because, as shown in Fig. 4, the
changes caused by a gesture tend to be high. This results
in large differences between adjacent samples, which we
can use for segmentation.

We note the following: First, in comparison to ambient
human motion such as walking and running, the changes
between adjacent samples tend to be higher during inten-
tional gestures close to the device. Thus, the above seg-
mentation procedure helps reduce the false positive rate.
Second, in some of our experiments, the difference be-
tween adjacent samples prematurely dropped below the
threshold, even before the end of the gesture. It rises
back up soon afterward, creating multiple close-by seg-
ments. To avoid this being detected as multiple gestures,
we combine any two segments that occur within 75 mil-
liseconds into a single segment.

(3) Gesture Classification: In principle, one could
run signal-processing algorithms such as dynamic time
warping to distinguish between the signals in Fig. 4.
However, this is not desirable since it increases the com-
putational complexity. Instead, AllSee uses simple rules
that have minimal complexity to distinguish between
gestures. For example, to classify between the push and
pull gestures, we use the following rule: if the maximum
changes in the signal occurs closer to the start of a ges-
ture segment, it is a pull action; otherwise, it is a push
action. In Alg. 1 we describe the rules for all eight of our
gestures. We note that the algorithm is a set of if-then-
else statements; in the worst case, these require only 56
instructions on an MSP430 microcontroller [10].

3.3 Analog Gesture Decoding

In this section, we ask if we can further reduce the power
consumption of the above design. As we see later in §5,
the main factor that contribute to power consumption is
the ADC. Specifically, we require an ADC with a reso-
lution of eight to ten bits for the classification algorithm
in §3.2 to work with high accuracy. So our goal is to
eliminate the need for such high-resolution ADCs.

Our idea is to encode gesture information directly us-
ing analog components such as capacitors and resistors.

Algorithm 1 Gesture Classification

while Vsig — Vsig_prev < THRESHOLD do
LOWPOWERSLEEP()

end while

[length, maxIndex] +— GETGESTURE()

80 < CLASSIFYSUBGESTURE(length, maxIndex)

[length, maxIndex] + GETGESTURE()
gl < CLASSIFYSUBGESTURE(length, maxIndex)

if (g0 = FLICK and gl = FLICK) then return D_FLICK
else if (g0 = FLICK and g1 = PULL) then return Z_OUT

else if (g0 = PUSH and g = FLICK) then return Z_IN
else if (g0 = PUSH and g/ = PULL) then return PUNCH
else if (g0 = PULL and g/ = PUSH) then return LEVER
else if (g0 = FLICK and g1 = NULL then return FLICK
else if (g0 = PUSH and g/ = NULL) then return PUSH
else if (g0 = PULL and g/ = NULL) then return PULL
end if

function CLASSIFYSUBGESTURE(length, maxIndex)
if (length < FLICKLENGTH) then return FLICK
else if (maxIndex < length/2) then return PUSH
else if (maxIndex > length/2) then return PULL
end if

end function

Such an approach could reduce the need to processing
the signals in the digital domain and hence avoids high-
resolution ADCs. To show the feasibility of this idea, we
design a circuit, shown in Fig. 5, that can distinguish be-
tween the punch and the flick gestures from Fig. 2. The
circuit has four main components: an envelope detec-
tor to remove the carrier frequency, a second envelope
detector that tracks time-domain changes caused by the
gestures at a slow rate, an averaging circuit that computes
the slow-moving average of the second envelope detec-
tor, and finally a low-power comparator that outputs bits.

Fig. 5 annotates the signals for the two gestures at each
stage of the circuit. After the first envelope detector, the
signals no longer have the carrier frequency. The second
envelope detector tracks the signal at a much lower rate,
and hence the punch signal looks like an increase and
then a decrease in the amplitude levels; this corresponds
to starting the arm at an initial state and then bringing
it back to the same state. The flick signal, on the other
hand, is a transition between two reflection states: one
where the fingers are closed to another where the fingers
are wide open.

The averaging circuit and the comparator allow us to
distinguish between these two signals. Specifically, the
averaging circuit further averages these signals to create
the red signals shown in the figure. Now the comparator
takes these signals and their average values as inputs, and
outputs a ‘1’ bit whenever the signal is greater than the
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Figure 5: AllSee’s analog gesture encoding. The circuit has four main components: an envelope detector to remove
the carrier frequency, a second envelope detector that tracks changes caused by the gestures at a slow rate, an averaging
circuit and finally a low-power comparator that outputs bits. The buffer ensures that the envelope detector and the
averaging circuit do not affect each other. At each stage, input (dashed lines) and output (solid lines) waveforms

corresponding to the punch and flick gestures are annotated.

average and a ‘0’ bit otherwise. Thus, the comparator
outputs unique set of bit patterns for the two gestures
(010 and 011 in the figure). Thus, we can classify these
gestures with almost no computational complexity.

We note three main points: First, the comparator is es-
sentially a one-bit ADC; it has minimal resolution and
hence consumes the least amount of power. Second,
the parameters in our circuit are chosen to account for
the timing information inherent in our specific gestures.
Thus, it is unlikely that random human motions would
trigger the same bit patterns. Third, while the above cir-
cuit only classifies the flick and the punch gestures, in
principle, one can use higher order capacitor and resistor
networks to encode all the eight gestures. This however
is not in the scope of this paper.

4 Hardware Design

Fig. 6 shows the general hardware design of an AllSee
device. It has two core components: an AllSee ges-
ture receiver, and the computational logic that detects
and classifies human gestures. Our implementation per-
forms the digital logic operations on a low-power micro-
controller. The AllSee gesture receiver primarily is the
design in §3 that extracts amplitude information. How-
ever, it could also incorporate the analog gesture encod-
ing mechanism described in §3.3.

The figure also shows optional components: a trans-
mitter and receiver for communications, an RF energy
harvester and the power management circuit to extract
power from RF signals of either TV towers or RFID read-
ers. These components are essential in devices such as
RFID tags and ambient RF-powered devices, but are not
necessary when AllSee is used in battery-powered mo-
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Figure 6: AllSee’s Hardware Design. It consists of
two main components: the wireless receiver for gesture
recognition and our classification logic. The other com-
ponents such as transmitter and receiver for communica-
tions, and energy harvester are optional.

bile devices such as smartphones. We note that our de-
sign could, in principle, be incorporated into sensor hubs
that are becoming popular on mobile devices.

5 Prototype Implementation

AllSee prototypes are implemented on two-layer printed
circuit boards (PCBs) using off-the-shelf commercial cir-
cuit components. The PCBs were designed using the
Altium design software and manufactured by Sunstone
Circuits. The capacitor and resistor values R, Ry, C|
and C; shown in Fig. 3 are set to 150 kQ, 10 MQ, 27 nF
and 0.2 uF respectively. Our pluggable gesture recogni-
tion component consists of a low-power microcontroller
(MSP430F5310 by Texas Instruments [10]) and an in-



Table 1: AllSee’s Average Power Consumption
] | ADC-based | Analog-based |

’ No Gestures \ 26.96 u W \ 45T u W ‘
’ 15 Gestures/minute \ 2891 u'W \ 585uW ‘

terface to plug in our wireless receivers. It also features
a UART interface to send data to a computer for debug-
ging purposes as well as low-power LEDs. The output
from the wireless receivers is sampled by an ADC at a
frequency of 200 Hz (i.e., generating a digital sample ev-
ery 5 ms). In most of our experiments, AllSee uses 10
bits of resolution at the ADC; in §6.1, however, we use
other resolutions and sampling rates to understand their
effects on classification accuracy.

To minimize power consumption, the microcontroller
sleeps most of the time. The ADC wakes up the micro-
controller to deliver digital samples every 5 ms. The mi-
crocontroller processes these samples before going back
to sleep mode. The maximum time spent by the micro-
controller processing a digital sample is 280 us.

We also build a prototype for the analog gesture en-
coding system described in §3.3 by incorporating addi-
tional components into our wireless receivers. Specifi-
cally, we use an ultra-low power comparator, TS881 [15],
and implement the buffer using an ultra-low power op-
erational amplifier (ISL28194 [8]). The output of the
comparator is fed to the digital input-output pin of the
microcontroller. The capacitor and resistor values Ry,
R>, R3, C1, C; and C5 shown in Fig. 5 are set to 470 kQ,
56 MQ, 20 kQ, 0.47 uF, 22 uF and 100 uF respec-
tively. The RF energy harvester, transmitter, receiver and
power-management circuit we use in our prototypes are
similar to those in previous work [30, 34, 35].

Table 1 shows the total power consumption of our pro-
totypes. For the ADC-based prototype, the 10-bit ADC
continuously sampling at 200 Hz consumes 23.867 uW.
The micro-controller consumes 3.09 uW for signal con-
ditioning and gesture segmentation and 1.95 uW for ges-
ture classification (as described in §3.2.2); the average
power consumption is 26.96 uW when no gestures are
present and 28.91 uW when classifying 15 gestures (in-
cluding the starting gesture) per minute. In the analog-
based prototype, the hardware components, the buffer
and the comparator consume a total of 0.97 uW. The
micro-controller consumes 3.6 W in sleep mode (i.e.,
no bit transitions at the comparator’s output). The av-
erage power consumption for the analog-based system
is 4.57 uW when no gestures are present and 5.85 uyW
when classifying 15 gestures per minute.’

2Note that our prototypes use off-the shelf components and a gen-
eral purpose micro-processor. One can further reduce the power con-
sumption by using application specific integrated circuits.
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Figure 7: Effect of distance and transmit power level.
The plots show results for two transmit power levels at
the RFID reader. We operate in conservative settings —
commercial RFID readers operate at up to 1 W.

6 Evaluation

We first present micro-benchmarks to understand the ef-
fect of various parameters on our system. We then eval-
uate different system aspects including classification ac-
curacy, response time, and false-positive rate.

6.1 Micro-Benchmarks

We evaluate the key aspects that affect classification ac-
curacy: (1) the user’s distance from the prototype and the
transmit power level, and (2) the bit-resolution and sam-
pling rate of the ADC. Since it is easier to run controlled
benchmark experiments with RFID readers than with TV
towers, in this section we use our RFID prototype in the
presence of an RFID reader.

Effect of distance and transmit power level: We run
experiments to understand the effects of these param-
eters on classification accuracy. Specifically, we run
our USRP-based RFID reader at two different transmit
power levels: 346 mW and 173 mW. Note that commer-
cial RFID readers can go upto 1 W; thus, we are op-
erating in more conservative settings. For each of the
power levels, we place our RFID-prototype in the decod-
ing range of the reader. We then have the user stand at
different distances from our prototype and perform our
eight gestures, 20 times each, without fully blocking the
signal from the RFID reader. Note that the users were
not trained to orient themselves in a particular direction.
At each of these distances, we compute the average clas-
sification accuracy across all eight gestures.

Fig. 7 shows classification accuracy as a function of
the user’s distance from our prototype. The plots show
the following:

e As the distance between the user and the device in-
creases, the classification accuracy decreases. This is ex-
pected since the strength of the wireless reflections from



£ 100 S
3 80 -

Q

<

é 60 /

@

MY

P AT
: ) o S B S

: O AL

: B 10 Bits

i 8 Bits

3 6 Bits e

(=) 0

0 20 40 60 80 100 120 140 160
Sampling Rate (Hz)

180 200

Figure 8: Effect of ADC parameters. The plot shows
the accuracies at three different ADC bit resolutions.

the user’s body decreases as the user moves away from
the device. This makes it harder to detect minute ges-
tures such as the flick motion, bringing down the classi-
fication accuracy. We note, however, that the accuracies
are greater than 90% at distances of 2.5 feet and 2 feet
respectively for the two power levels. Such distances
are sufficient for most gesture-recognition applications
on mobile devices and sensors.

o As the transmit power level decreases, the classifica-
tion accuracy decreases. This is because our wireless
receiver has a minimum sensitivity below which it can-
not accurately track changes from human gestures. We
note, however, that the power levels we use in this exper-
iment are lower than the 1 W power used by a commer-
cial RFID reader. Further, our prototype RFID tags have
about 11 dBm lower sensitivity than commercial tags. So
while the trends we see here would hold for commercial
tags, one can expect that the system would work at larger
distances between the user and the prototype.

Effect of ADC parameters: The power consumption
increases with the sampling rate and the bit resolution
at the ADC. To empirically evaluate this effect, we run
experiments in the presence of an RFID reader with a
transmit power of 346 mW. We compute the classifica-
tion accuracies for different ADC sampling frequencies
and 6-bit, 8-bit and 10-bit resolutions. The user performs
the eight gestures 20 times each, for each combination of
sampling rates and resolutions.

Fig. 8 shows the detection and classification accura-
cies for the eight gestures shown in Fig. 2 as a function
of the sampling rate. The different curves correspond to
different bit resolutions. The figure shows that the ac-
curacy typically increases with the ADC’s bit resolution.
The accuracy is also lower at low sampling rates; this is
expected because as the sampling rates decrease, we lose
timing information about the gestures.
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Figure 9: Confusion matrix for our RFID prototype.
The average classification accuracy across all the ges-
tures is 97%.

6.2 AllSee’s Classification Accuracy

We evaluate AllSee’s accuracy in classifying gestures
with our RFID-based and TV-based prototypes using the
ADC design in §3.2.

Evaluating Our RFID-Based Prototype: We first eval-
uate the classification accuracy of gesture recognition us-
ing RFID signals.

Experiments: We run experiments in locations spanning
two lab spaces in the UW CSE building. To check if
AllSee works in the presence of multi-path reflections
from nearby objects, one of these locations has strong
reflective surfaces such as walls and objects (metallic
cupboards, desks) close to our prototype hardware. In
each of these locations, our prototype is placed in posi-
tions that are in the decoding range (about 1 meter) of
an USRP-based RFID reader with a 346 mW transmit
power. In our experiments, users perform the gestures in
Fig. 2 at a distance of 1.5 to 2.5 feet away from the proto-
type. Before each experiment, users were shown how to
perform all of the gestures. We ran the experiments with
five users who volunteered to perform gestures; one of
the five users is a co-author of this paper. Each gesture
is performed a total of 20 times. The gestures are de-
tected and classified on the microcontroller on our hard-
ware prototype using the algorithm described in Alg. 1.

Results: Fig. 9 plots the confusion matrix where each
row denotes the actual gesture performed by the user and
each column the gestures it was classified into. The last
column counts the fraction of gestures that were not de-
tected at the receiver. Each element in the matrix cor-
responds to the fraction of gestures in the row that were
classified as the gesture in the column; the fraction is
computed across all the locations and the users. The ta-
ble shows the following:
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Figure 10: Confusion matrix for our TV prototype.
The average classification accuracy across all the ges-
tures is 94.4%. The lower accuracy is due to lower RF
frequency of TV transmissions.

e The average accuracy is 97% with a standard devia-
tion of 2.51% when classifying among our eight ges-
tures. This is in comparison to a random guess, which
has an accuracy of 12.5% for eight gestures. This shows
that one can extract rich information about gestures from
time-domain wireless signals. We note that all the detec-
tion and classification operations were performed on our
hardware prototype. This demonstrates the feasibility of
achieving gesture recognition on battery-free devices.

e The flick motion was the most likely gesture to be un-
detected. This is because the flick gesture involves only
finger movements; wireless reflections from the fingers
have a much lower energy than those from the whole
arm. Thus, the receiver has a higher probability of not
detecting these gestures. Finally, there are small varia-
tions in the signals, due to differences in gesture artic-
ulation across users. These variation however are small
and do not necessitate per-user tuning.

Evaluating Our TV-Based Prototype: Next we evalu-
ate our accuracy using ambient TV signals.

Experiments: We run experiments using our battery-free
prototype that harvests TV signals for power. We use the
receiver design from our prior work on ambient backscat-
ter devices [30] that can currently operate up to 10 Km
away from a TV tower with power levels ranging be-
tween -24 dBm and -8 dBm. AllSee operates at similar
distances and power levels from the TV tower. In prin-
ciple, we can increase the distance and power sensitivity
by using ASIC designs; this, however, is not in the scope
of this paper. Our receiver prototype is tuned to harvest
power and extract gesture information from TV signals
in the 50 MHz band centered at 725 MHz. The users
stand in a random location 1.5 to 2.5 feet away from the
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Figure 11: False Positive Rate from a 24-Hour trace.
The figure plots the false positive rate when we use a flick
gesture as a starting sequence.

AllSee receiver and randomly perform all our eight ges-
tures 20 times each. As above, the microcontroller on our
prototype detects and classifies the gestures. We extract
this information and compute the classification accuracy
for the gestures.

Results: Fig. 10 shows the confusion matrix for our
TV-based prototype. The figure shows similar trends to
the results with our RFID-based prototype. The classi-
fication accuracies with our TV-based prototype, how-
ever, are lower than those with RFID signals. The main
reason for this is the lower transmission frequency of
TV signals. Specifically, lower transmission frequen-
cies (higher wavelengths) require larger displacements
to have a similar change in the received signals. Since
RFID transmissions occur at 915 MHz, small displace-
ments (e.g., a flick gesture) create large changes in the
wireless signal. In contrast, since the TV transmissions
occur at 725 MHz, the extent of wireless changes is
smaller, making it harder to detect such gestures.

6.3 AllSee’s False Positive Rate

To avoid random human motion near the device from be-
ing classified as the target gestures, AllSee uses a unique
gesture sequence (a repetitive flick gesture) at the begin-
ning to detect the target human. In this section, we eval-
uate the effectiveness of such an approach.

Experiments: Since our prototypes have the range of a
few feet, we stress-test our system by placing them next
to a participant’s desk. Specifically, we run experiments
in our lab over a 24-hour period during which the par-
ticipant continues to perform activities including typing,
eating, and moving around in the chair. Our prototype’s
location is such that five other lab occupants have to get
as close as a foot to enter or leave their workspace.
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Figure 12: Response time for various gestures. The
maximum response time is less than 80 s across all the
gestures. Z-in, Z-out, and D-flick refer to the zoom in,

zoom out, and double flick gestures.

Results: Fig. 11 plots the average number of false detec-
tion events per hour as a function of time. The results
show that when the receiver does not use a starting se-
quence (zero repetitions), the number of false positive
events is about 11.1 per hour over the 24-hour period.
We note that this is surprisingly low despite running ex-
periments next to the user. This is because, as explained
in §3.2, our segmentation algorithm is designed to only
account for the large instantaneous changes in the re-
ceived amplitude, that occur with intentional gestures;
this reduces the probability of ambient motion resulting
in the expected segment lengths. The results also show
that the average number of false-positive events reduces
to 1.46 per hour when a single flick action is used as a
starting sequence. This is because the flick action creates
a very short burst of amplitude changes that rarely occur
with typical human activities. Note that as the number of
flick repetitions increase, the false-positive rate reduces.
Specifically, with two repetitions, this average rate re-
duces to 0.083 events per hour. This is again because
a repetitive flick motion creates periodic short bursts of
amplitude changes, which are unlikely to occur with typ-
ical activities. Further, since we expect these bursts to
have a specific range of periodicities, random mechanical
and environmental variations are unlikely to be confused
for the repetitive flick sequence.

6.4 AllSee’s Response Time

Short response times are important for the interactive na-
ture of gesture recognition. Here, we evaluate AllSee’s
response time, i.e., the time between the completion of
a gesture and its classification by our prototype. Re-
call that the microcontroller runs instructions at 1 MHz
and the ADC operates at 200 Hz, waking up the micro-
controller every 5 ms to deliver the digital samples. A
1 MHz microcontroller can run up to 10,000 instructions
in 10 ms. The number of instructions in Alg. 1 is signif-
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Table 2: Classification With Analog Gesture Encoding
Classification Rate
25/25
23/25

Punch Gesture
Flick Gesture

icantly smaller and hence 10 ms is an upper bound on
AllSee’s response time.

Experiments: To compute the exact response time, we
measure the time difference between when the user fin-
ishes performing the gesture and when the microcon-
troller outputs the classified gesture. We program the
microcontroller to toggle two output pins: first pin when
it receives a data sample from the ADC and the second
at the end of gesture classification. We observe the two
output pins using an oscilloscope. In the absence of ges-
tures, the first pin toggles periodically at 5 ms (sampling
rate of ADC) and the second pin is steady. In the pres-
ence of a gesture, however, the second pin toggles im-
mediately after classification. We compute the response
time by measuring the time difference between the sec-
ond pin’s toggle and the periodic toggle on the first pin
right before it. During the evaluation, the user performs
our eight gestures 20 times and we compute the response
time for each gesture averaged across the 20 repetitions.

Results: Fig. 12 shows the average measured response
times for all the gestures. The plot shows the following:

e The maximum response time across all the gestures
is less than 80 us. This demonstrates that AllSee’s ges-
ture recognition algorithm requires negligible computa-
tion that can be performed even on an MSP430 with lim-
ited memory and computational capabilities.

e The variance of the response time, within the repeti-
tions of the same gesture, is between 2-3 us. This is
because across experiments, the number of instructions
that need to be run per gesture remains constant and de-
terministic. The only variability comes from the opera-
tional frequency of the microcontroller which is 1 MHz
and hence has a resolution of 1 us.

6.5 Evaluating Analog Gesture Encoding

Next, we evaluate our prototype for analog gesture en-
coding in the presence of RFID signals. The user stands
at a distance of two feet away from our prototype tag and
randomly performs the flick and punch gestures, 25 times
each. Our prototype detects these gestures using analog
components such as capacitors and resistors as described
in §3.3. We extract the results and compute the classifi-
cation rates for the two gestures.

Table 2 shows the classification results. They show
that while the punch gesture was always correctly de-
tected and classified, the flick gesture was misclassified
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Figure 13: Phone Prototype. We interface a Galaxy
Nexus with our miniaturized prototype mounted on a 3D
printed phone case. We achieve 92.5% accuracy for the
gestures in Fig. 2, in through-the-pocket scenarios.

in 2 out of the 25 trials. This is because the flick action
involves finger motion that has less effect on the wireless
signals than the arm motion in the punch action. Note
that the average accuracy across the two gestures is about
96%. These results show the feasibility of our analog
gesture encoding approach.

6.6 Through-the-Pocket Gestures

The ability to change the music or mute the phone while
it is in a pocket, purse, or jacket is a useful capability.
In this section, we integrate our miniaturized hardware
prototype with a Samsung Galaxy Nexus smartphone [7]
and demonstrate gesture recognition in such scenarios.
We designed a 3-D printed case to mount our prototype
on the phone. Further, as shown in Fig. 13, we modi-
fied the antenna for a better form factor and connect our
prototype to the phone via a USB OTG cable.

We evaluate our smartphone prototype by placing the
device in the pocket of a jacket that the user is wearing.
The user then performs the eight gestures in Fig. 2 on
the same x-y plane as the phone, 20 times each. Our
results show that the mean accuracy across gestures is
about 92.5%, which is encouraging. We note two main
points: First, in comparison to the previous scenarios,
the classification accuracy here is a bit lower. This is
because, in these experiments, our device is hidden be-
hind the jacket fabric and hence experiences higher sig-
nal attenuation. Second, our proof-of-concept prototype
is limited to scenarios where the user is stationary and
does not walk/run while performing the gestures. In prin-
ciple, one can leverage other low-power sensors such as
accelerometers on the phone to detect these scenarios;
this however is not in the scope of this paper.
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7 Discussion

We describe how one may augment AllSee’s current de-
sign to make it more ubiquitous and robust.

Leveraging cellular and Wi-Fi signals: Our current pro-
totypes work with TV and RFID transmissions. How-
ever, building AllSee prototypes that work with other RF
signals such as Wi-Fi and cellular transmissions can en-
able greater ubiquity. We believe that the techniques de-
veloped in this paper can provide the framework for such
designs. For instance, one could design specific envelope
detectors that focus on human gestures while eliminating
uncorrelated changes caused by the burstiness in these
systems. Further, to address the issue of non-continuous
transmissions, one can leverage the periodically trans-
mitted beacons or pilot symbols in Wi-Fi and cellular
systems to extract gesture information.

Reducing the gesture recognition range: One of the ad-
vantages of using wireless signals is that they enable far-
field gesture recognition. However, one could reduce
the sensitivity of our wireless receivers to reduce their
range. This could be beneficial in certain applications
where proximity is used as a proxy for access control.

Integration with other power sources: Our current design
uses existing signals (e.g., TV and RFID transmissions)
as a source of both power as well as gesture information.
In principle, however, one can use AllSee to enable ges-
ture recognition on other harvesting devices where we
extract gesture information from wireless signals but use
solar or mechanical energy for harvesting.

8 Conclusion

We introduce AllSee, a novel gesture recognition system
that consumes three to four orders of magnitude lower
power than the state-of-the-art systems today. AllSee
can operate on battery-free devices such as ambient RF
powered devices and RFID tags; it also enables always-
on gesture recognition on mobile devices such as smart-
phones and tablets. We build prototypes and demonstrate
that our system can detect and classify a set of eight ges-
tures with classification accuracies as high as 97%. We
believe that this is a promising result and hope that the
techniques developed in this paper would take us closer
to the vision of ubiquitous gesture interaction.
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